sábado, 10 de agosto de 2013

Cartografia Básica


Este outro material extraído do site <http://www.cartografia.eng.br/artigos/ncarto06a.php#63 >




CAPÍTULO 6: SISTEMA DE PROJEÇÕES CARTOGRÁFICAS
6.3) Projeção equivalente
6.4) Projeções conformes
6.5) Projeções eqüidistantes
6.6) Projeções azimutais
6.7) Projeções afiláticas
6.8) Sistema UTM
 
6.3) Projeção Equivalente

A projeção equivalente que, na terminologia inglesa, é denominada de "de área igual", tem a propriedade de não deformar as áreas, conservando, assim, quanto à área, uma relação constante com as suas correspondentes na superfície da Terra. O termo em português já denuncia, pela mera apresentação do vocábulo, a equivalência de proporção das áreas cartográficas. Significa que, seja qual for a porção representada num mapa, ela conserva a mesma relação com a área de todo o mapa.

As quadrículas de um mapa, formadas por paralelos e meridianos, só podem guardar, entre si a relação de tamanho, se modificarmos a forma dessas quadrículas. Ora, quaisquer destas quadrículas, na esfera terrestre, são compostas de paralelos e meridianos que se cruzam em ângulos retos. A deformação neste caso é logo percebida pela alteração dos ângulos. Mas a recíproca nem sempre é verdadeira, também, aqui se pode afirmar que nem sempre uma quadrícula em ângulos retos deixa de ser deformada.
 
c_6equiv.jpg (17863 bytes)

A figura acima ilustra o mapa-múndi desenhado sobre a projeção de Aitoff. Trata-se duma projeção equivalente confinada numa elipse, na qual a linha que representa o equador (o eixo maior) é o dobro da linha que substitui o meridiano central (o eixo menor). Podemos facilmente observar que qualquer quadrícula deste mapa, embora varie enormemente de forma, guarda, por latitude, a mesma área. Nota-se, ainda, que o centro da projeção (onde se cruzam as únicas linhas retas aí existente) é o único ponto sem deformação, isto é, onde os ângulos são retos.
sobe
 
6.4) Projeções Conformes

A projeção conforme, ao contrário da anterior, é aquela que não deforma os ângulos e, em decorrência dessa propriedade, não deforma, igualmente, a forma de pequenas áreas. Outra particularidade desse tipo de projeção é a escala, em qualquer ponto, é a mesma, seja na direção que for, embora, por outro lado, mude de um ponto para outro, e permaneça independente do azimute em todos os pontos do mapa. Ela só continuará a ser a mesma, em todas as direções de um ponto, se duas direções no terreno, em ângulos retos entre si, forem traçadas em duas direções que, também, estejam em ângulos retos, e ao longo das quais a escala for a mesma.
     
c_6conf01.jpg (13162 bytes)   A figura mostra o planisfério traçado na projeção conforme de Mercátor. Como está claro aí, as quadrículas não guardam proporção em relação às áreas, mas a conformidade está assegurada porquanto todas essas quadrículas são representadas por ângulos retos. Nada está torcido, como na figura anterior (projeção equivalente).
     
Afim de melhorar a compreensão, devemos observar a figura seguinte. Compara-se, desta feita, aquela figura com a atual: a única coisa em comum é que, achando-se ambas na mesma escala, as massas continentais, ao longo da linha equatorial, conservam enorme semelhança, uma vez que: a) e escala só é, de fato, a mesma, nessa extensão equatorial; b) sendo a linha central de ambas as projeções, tanto áreas, quanto formas, conservam semelhanças. Quanto ao resto, tudo varia.

O desenvolvimento da esfera, através de um cilindro, de acordo com a concepção de Mercátor: um gomo do globo é recortado (a) e levantado (a´), projetando-se, consequentemente, conforme o esquema idealizado por Mercátor.

sobe
  c_6conf02.jpg (22908 bytes)
 
6.5) Projeções Eqüidistantes
     
c_6equid.jpg (28026 bytes)   A projeção eqüidistantes é a que não apresenta deformações lineares, isto é, os comprimentos são representados em escala uniforme. Deve ser ressaltado, entretanto, que a condição de eqüidistância só é conseguida em determinada direção e, de acordo com essa direção, um projeção eqüidistante se classifica, como já indicado, em meridiana, transversal e azimutal ou ortodrômica. A figura indica, perfeitamente, as propriedades das projeções eqüidistantes

A projeção azimutal (ou zenital) eqüidistante do mundo, como o centro em Brasília. Todas as distâncias radiais, à partir do centro, para qualquer parte da Terra, são corretas
sobe    
 
6.6) Projeções Azimutais
     
A projeção azimutal, igualmente denominada zenital, é uma projeção que resolve apenas um problema, ou seja, aquele que nem uma equivalente, nem uma conforme lhe dá solução, o qual é, numa carta, o dos azimutes ou as direções da superfície da Terra. Ela se destina, invariavelmente, a mapas especiais construídos para fins náuticos ou aeronáuticos.

Como se pode verificar, os três desenhos ("a", "b" e "c") mostram o esquema de construção e o respectivo desenvolvimento de três modalidades duma projeção azimutal:
a estereográfica, em que os raios são projetados do pólo (oposto);
a gnomônica, com aqueles raios projetados do centro da esfera;
a ortográfica, em que os paralelos, ao invés de projetados de um ponto, como nos dois primeiros casos, são aqui, projetados da linha equatorial.

É interessante analisar esse conjunto. A gnomônica e a ortográfica acarretam enormes deformações nas áreas próximas do círculo equatorial, ao passo que, na estereográfica, são notadas menores alterações nas referidas áreas.

sobe
  c_6az.jpg (25306 bytes)
 
6.7) Projeções Afiláticas

A projeção afilática, igualmente conhecida como arbitrária, nos Estados Unidos, não possui nenhuma das propriedades dos quatro tipo, isto é, equivalência, conformidade, eqüidistância e azimutes certos, ou seja, as projeções em que as áreas, os ângulos e os comprimentos não são conservados.

Porém, este tipo de projeção pode possuir uma ou outra propriedade que justifique a sua construção. Por exemplo, a gnômica, mesmo apresentando todas as deformações, possui a excepcional propriedade de representar as ortodromias retas.
sobe
 
6.8) Sistema UTM

Na realidade, a conhecida UTM não é uma projeção, mas um sistema da projeção transversa de Mercátor (conforme de Gauss). Surgiu o sistema em 1947, para determinar as coordenadas retangulares nas cartas militares, em escala grande, de todo o mundo.

Estabelece o sistema que a Terra seja dividida em 60 fusos de seis graus de longitude, os quais têm início no antimeridiano de Greenwich (180º), e que seguem de oeste para leste, até o fechamento neste mesmo ponto de origem.

Quanto à extensão em latitude, os fusos se original no paralelo de 80ºS até o paralelo 84ºN.
     
Se, em relação à longitude, os fusos são número 60, no que toca à latitude, a divisão consiste em zonas de 4º, e isto está vinculado ao tamanho da carta de 1:100.000, e não à projeção. Os fusos são decorrentes da necessidade de se reduzirem as deformações. Além dos paralelos extremos (80ºS e 84ºN), a projeção adotada, mundialmente, é a estereográfica polar universal.

Se fixamos a nossa atenção em qualquer uma dessa 1.200 quadrículas, verificaremos que os 6 graus de longitude apresentam as seguintes características: os dois meridianos laterais são múltiplos de 6, assim como o meridiano central é de 6 mais 3. A figura assinala, a propósito, duas quadrículas localizadas na região Sudeste: a primeira, com o meridiano central de 51º e os dois meridianos laterais de, respectivamente, 54º e 48º; a segunda, com o meridiano central de 45º e os dois laterais de, respectivamente, 48º e 42º. Quanto aos limites em latitude, temos, para ambas as quadrículas, os paralelos de 28º e 20º.   
  c_6utm.jpg (31053 bytes)
 
Para criar o sistema foi utilizado uma superfície de projeção 60 cilindros transversos e secantes à superfície de referência (elipsóide), cada um com amplitude de 6º em longitude. Seu uso é limitado entre os paralelos 80º S e 84º N.

Os cilindros são distribuídos na superfície de referência, de modo a abranger fusos de 6º de amplitude, compreendidos entre as longitudes múltiplas de 6º + 3º (..., 57º, 51º, 45º,...). Sobre este meridiano central (M.C.), existe uma deformação dos cilindros com a superfície de referência - as linhas de secância - o coeficiente de deformação linear é unitário. Não existem deformações lineares nestas regiões.

Cada um dos fusos, chamamos fusos UTM, tem origem na interseção do seu meridiano central com a linha do Equador. As coordenadas UTM destes pontos são x=E (Este)=500.000,00 m e y=N (Norte)=10.000.000,00m, no Hemisfério Sul, e y=N=0,0m, no Hemisfério Norte.

As coordenadas UTM são obtidas a partir de coordenadas geográficas, latitude e longitude de pontos de interesse, usando-se fórmulas complexas. O coeficiente de deformação linear (k), que varia de 0,9996 sobre o M.C. a 1,001 nos extremos do fuso, passando pelo valor unitário sobre as linhas de secância, também é obtido a partir de fórmulas, sendo função das coordenadas E e N dos pontos em questão.

O sistema UTM é conforme, as distâncias e áreas apresentam deformações. A deformação de área é função da posição ocupada pelos pontos dentro de um fuso UTM. Esta variável é conhecida como coeficiente de deformação linear e representada pela letra grega kapa (k). A orientação das figuras também pode ser considerada pseudodeformação, a não ser no meridiano central de cada fuso, onde o Norte da quadrícula UTM (NQ) coincide com o Norte Verdadeiro (NV). Em todas as demais regiões dos fusos esses dois eixos formam entre si, um ângulo denominado Convergência Meridiana, representado pela letra grega gama (y).


Nenhum comentário:

Postar um comentário